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OBSERVATIONS OF BUBBLE SELF-ORGANIZATION
IN LASER-MATTER INTERACTIONS

S. LUGOMER

Ruder BoSkovi¢ Institute, Bijenicka c. 54, 10002 Zagreb, Croatia

Bubbles generated in laser—metal interactions (LMI) at the transition from planar-to-volume
boiling behave like hard (and soft) spheres. Micrographic analysis indicates that the surface
layer of vaporizing metal, which comprises small microscale bubbles, behaves like a two-
dimensional granular system. Bubble collision leads to bubble self-organization which changes
with laser power density Q ,, and falls into (i) the kinetic regime, (ii) the clustering regime, or (iii)
the regime of inelastic collapse (when bubbles form chain-like clusters), in analogy with the
results of numerical simulations of hard-sphere dynamics. At a certain power density, shock
waves that travel over the surface become strong enough, so that the system of bubbles behaves
like horizontally and vertically shaken granular material. Since bubbles in the vibrational
process are decelerated, hydrodynamic forces deform them, causing them to stay coalesced after
the collision, forming a cluster with plateau borders, which is actually metal foam. The results
presented show the existence of various complexity levels in the self-organization of bubbles,
their sensitivity to the variation of interaction parameters, and finally, they indicate some
universal features of bubble system dynamics. © 2001 Academic Press

1. INTRODUCTION

A SERIES OF STUDIES OF SELF-ORGANIZATION (SO) of various types of entities in laser-matter
interaction (LMI), like droplets (Lugomer & Maksimovic 1996), vortex filaments (Lugomer
1996, 1998; Lugomer & Maksimovi¢ 1997), and bubbles (Lugomer & Maksimovi¢ 1999) has
shown that various types of patterns of every entity can be generated. It has also been
shown that these patterns change not only in the morphological sense, but also in the sense
of topological complexity, depending (for t = 10 ns laser pulse) on laser power density Q,.

In this paper, we consider SO patterns of bubbles generated in LMI at the onset of
normal boiling in the terminology of Miotello & Kelly (1995). It is rather surprising that
their patterns strongly resemble the patterns of hard spheres, generated in a collision
process.

Gas-phase nucleation that starts inside a surface layer (or slightly below it) does not
appear over the whole interaction space (as usually assumed) but at certain zones only; the
change of laser power density leads not only to a change of bubble density, but also to
different types of collision processes. This paper seems to be the first one that shows that the
beginning of volume vaporization in laser-matter interactions (LMI) is a complex process,
which belongs to different types of bubble dynamics in different regions (inside the inter-
action space). These basins of dynamics comprise different types of bubble SO, which
includes regular, irregular, and chaotic structures. In some cases, chain-like, bubble forma-
tions were also observed.

In the following, we consider the problem of bubble self-organization in different basins
observed under the same laser and experimental conditions on a Ta surface. This paper
indicates that these SO processes are very similar to the SO processes of hard (and soft)
spheres, but it also raises some questions about this similarity.
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2. EXPERIMENTAL SYSTEM

A series of experiments were performed in order to generate bubbles in the transition regime
from planar-to-volume vaporization, to study their spatial organization, the interaction
with shock waves, and their dynamics. A Q-switched Nd-YAG laser of E = 0.3 J of pulse
radiation of 10 ns was used to irradiate the target. The pulse power density Q was varied
below (and up to) the volume boiling threshold of 10® W/cm? by varying the spot size, until
bubbles start to appear on the surface. The variation of the spot size caused the change of
bubble self-organization.

The tantalum (Ta) plates were mechanically polished and washed in alcohol. Micro-
graphs of laser-treated surfaces were obtained using scanning electron microscopy (SEM),
and then were numerically filtered by using the Adobe Photoshop Program. Various details
were made visible by changing the recognition level in the program.

3. RESULTS AND DISCUSSION

3.1. BUBBLE SELF-ORGANIZATION ON A FREE VIBRATING SURFACE: SMALL VIBRATIONAL
AMPLITUDE: 4 ~ 0

A vaporizing surface of metal is exposed to shock waves, acoustic waves, etc., traversing the
interaction space in various directions. We first consider the case of bubble dynamics at
small laser power density, when the vibrational amplitude 4 is small or absent, thus
transforming the problem into the problem of bubble SO on a free surface at rest.

3.1.1. Bubble self-organization of type 1

At the laser-induced transition from planar-to-volume vaporization, the Ta surface is
covered with bubbles, the distribution of which is pre-dominantly homogeneous or homo-
geneous-like. [Notice that an ideally homogeneous bubble distribution can hardly be
obtained in LMI on a vaporizing metal surface at T ~ 5000 K. Homogeneous bubble
distribution is more likely to be obtained at (very) small bubble density, like that shown in
the upper right part of Figure 1. Such distributions are generated mostly at the very
threshold of vaporization by precise adjustment of laser power density. ]

Homogeneity in bubble distribution exists in separate basins (inside the laser spot) in
which bubble dynamics and self-organization occur independently. Figure 1 (which shows
a frozen-in situation after the laser pulse termination) is obtained from the SEM micrograph
by numerical filtration under high contrast. High contrast suppresses all unimportant
details and background features, showing bubble-like black dots. This bubble formation is
not a cluster because particles do not touch each other. In this regime, a system of spheres
that begins in an initial state of uniform density with a Maxwellian distribution of velocities
experiences several hundred collisions per particle. The system then “cools” as the collisions
dissipate the kinetic energy of the initial state (McNamara & Young 1994).

This type of bubble organization may be compared with the organization of hard spheres
in two dimensions, obtained in numerical simulation by McNamara & Young (1994). Their
numerical simulation performed for the restitution coefficient r = 0.88 and the number of
collisions C/N =400, N = 1024 inelastic discs, showed that the behaviour of bubbles is
similar to the behaviour of molecules in the so-called “kinetic regime” [Figure 1(b)], which
does not result in clustering.

By a slight reduction of the spot size ( < 10%), i.e. via an increase in power density, the
bubble formation (the SO structure) changed into a periodic wavy-structure shown in
Figure 2(a). Since particles are separated, i.e. they do not touch each other, this periodic
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Figure 1. (a) Laser-induced bubble formation on Ta surface in the “kinetic regime”. The micrograph
was numerically filtered with high contrast, so that bubbles appear as black dots; M ~ 250 x (b)
Numerical simulation: the final (C/N = 400) “kinetic regime” configuration of N = 1024 inelastic
discs with v = £ and r = 0.99, the solid discs are all particles that participated in the final 200 collisions

of this simulation (from McNamara & Young 1994).

wavy-like SO of bubbiles also belongs to the “kinetic regime”. It may be compared with the
wavy formation of hard spheres under periodic boundary conditions, and under the same
initial conditions as above, i.e. homogeneous bubble density, homogeneous temperature,
and isotropic and homogeneous velocity distribution. The behaviour of such a system,
consisting of 20000 spheres, was numerically simulated by Goldhirsch & Zanetti (1993),
supposing the Maxwellian velocity distribution. They have shown that the equipartition of
energy is prominent at early stages, whereas a typical scale corresponding to the wavevector
k = 7 is observed at later stages (corresponding to the predominance of the slowest shear
mode in the system). Figure 2(b) represents a typical result of the numerical simulation of
the mass distribution of the disks after a long enough time. The size of such a system is less
than Z/(1 — 7#)'/2, i.e. less than //r, where / is the mean free path of a sphere and r is the
restitution coefficient (Goldhirsh & Zanetti 1993). Figure 2(b) shows density nonuniformity
but no discernible clusters, and therefore belongs to a kinetic regime of dynamics. This
figure can favourably be compared with our figure [Figure 2(a)], which shows a system of
bubbles on a Ta surface with a periodic distribution.

3.1.2. Bubble self-organization of type 11

By increasing the laser power density by a stepwise reduction of the spot size by < 10%,
one can observe the change in the bubble formation and deviation from the “kinetic
regime”. Bubbles are no longer separated but touch each other at a point, and give rise to
rectangular cells, as shown in Figure 3(a). This figure shows the bubble formation, which
may be compared with the formation of spheres obtained by numerical simulation of the
“clustered regime”. If the state of uniform density of spheres is unstable in a cooling
“granular” medium, clusters start to form throughout the gas. Clustering occurs when the
density of the granular medium spontancously becomes nonuniform. This was demon-
strated for a slightly different restitution coefficient (r = 0.8), and for the same value of
N (N = 400) by McNamara & Young (1994). The transition from the “kinetic regime” to the
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“clustered regime” is a long-wavelength instability described by kinetic theories. Clusters
cannot form in domains too small to allow linearly unstable waves. The bubble clustering
observed on a Ta surface, shown in Figure 3(a), can be compared to the clustering in Figure
3(b) obtained by numerical simulation (McNamara & Young 1994), for the granular medium.

3.1.3. Bubble self-organization of type 111

Further increase in laser power density results in a new type of bubble self-organization,
which is different from that described above. Bubbles are grouped into large clusters in
which spheres (discs) are in “solid” contact and stay permanently in this position after
collisions. Figure 4(a) shows two black curves (chains) of bubbles in permanent contact.
This figure can be compared with the numerically generated chain-like clusters of
McNamara & Young (1994), shown in Figure 4(b), clusters were obtained on 40000
inelastically colliding particles, clustering per particle, and the average area occupied by
particles was 0.05. A new qualitative phenomenon that occurred was called the inelastic
collapse. McNamara & Young (1994) showed that inelasticity could lead to an infinite
number of collisions occurring at a finite time. This type of bubble self-organization
appeared if the system size was larger than //e. In the 1-D case, such a collision sequence
made particles “stick” together in close contact, with no relative motion. Such a situation
was generated with » = 0.6 and C/N = 68.3. The inelastic collapse in the 2-D case produced
dense chain-like formations inside clusters (Petravic et al. 1993).

The relationship between the inelastic collapse and the phenomenon of clustering, which
indicates the breakdown of ordinary hydrodynamics, needs clarification. One plausible
scenario is that, once the system forms clusters, the occurrence of the inelastic collapse
exceeds a critical value. Another scenario assumes all clusters to be transient, which must
eventually terminate in either the inelastic collapse or the formation of shear bands (Jaeger
et al. 1996).

Figure 4. (a) Laser-induced bubble formation on Ta surface in the “collapsed regime”. The
chain-like formations of bubbles in contact are clearly seen. Notice the excitation of Faraday waves
around the bubble cluster, which are characteristic of the boiling surface. (b) Numerical simulation:
the final (C/N = 68.3) “collapsed regime” configuration of N = 1024 inelastic discs with v = % and
r = 0.6; the solid discs are all particles that participated in the final 200 collisions of this simulation.

(from McNamara & Young 1994).
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3.2. BuBBLE DyNAMICS OF A FREE VIBRATING SURFACE: LARGE VIBRATIONAL AMPLITUDE:
A#0

With the reduction of the spot size, laser power density increases so that shock waves
generated in LMI become more intense. When their intensity becomes large enough to
influence bubble dynamics, some new characteristics in the bubble self-organization set in.

A vaporizing surface containing bubbles is excited by shock waves, and behaves as a free
surface of vibrated liquid, similarly to a free vibrating surface of granular material. It
exhibits several wave phenomena, as well as more complex irregular (and possibly chaotic)
states (Jaerger et al. 1996; Pak & Behringer 1993), i.e. it resembles the system of hard
spheres.

3.2.1. Inelastic collapse of bubbles caused by travelling waves

The large vibrational amplitude of a vaporizing surface (which contains bubbles), causes the
surface oscillatory motion, which can be expressed as

Zo(f) = A(x)sin (2zft), (1)
where fis the frequency. The amplitude 4 can have a spatial modulation of the form
A(x) = Ag[1 — Bcos(2nx/L)], (2)

as supposed by Gallas et al. (1992).

The different waves arising in this oscillatory system can be either travelling or standing
(when hopping is weak or nonexistent). Also, subharmonics and their superposition occur,
which is strikingly similar to Faraday instabilities in ordinary liquids (Fouve et al. 1992).

Different types of bubble clusters have been observed. This indicates that self-organized
patterns of bubbles are a consequence of (surface) transient waves, which generate clusters
that change in space-time. Consequently, different clusters have a (slightly) different shape
at the moment of pulse termination. The most frequently observed clusters are quasi-
hexagonal bubble clusters shown in Figure 5(a, ¢), which are a consequence of oscillation-
induced parametric wave patterns of spheres. They may be interpreted in the spirit of Mello
et al. (1994, 1995), Taguchi (1992), Gallas et al. (1992) and Bourzutschky & Miller (1995) for
the convection in vertically oscillated granular material, as well as in the spirit of Pak
& Behringer (1993) for the patterns generated by surface waves. Namely, the internal
structure of clusters reminds one of the structure characteristic of oscillatory convection
patterns. On the other hand, their contour (polygonal) is shaped by the fronts of random
surface waves, as shown in the corresponding schematic reconstructions in Figure 5(b, d). It
is seen that the wave fronts of the surface waves form quasi-regular clusters in addition to
(besides) hexagonal ones.

In our view, these patterns formed on a vaporizing Ta surface may be assumed to be
patterns formed in the presence of a series of random (surface) waves generated simulta-
neously by vertical and horizontal excitation. Let us now look at two characteristics of
clusters: (i) bubble size distribution and (ii) bubble-bubble boundary.

(i) Bubble size distribution inside a cluster
Magnification of a bubble cluster indicates that larger bubbles are located at the centre of
the cluster, whereas smaller ones are on its periphery (Figure 6). This can also be observed in
quasi-hexagonal clusters in Figure 5. Such a size separation of bubbles is typical of
a vibrated system of spheres. When granular materials are vibrated (or shaken), particles of
different sizes tend to separate with the largest particles moving to the centre and to top,
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Figure 5. Laser-induced quasi-hexagonal bubble formation on Ta surface, formed by horizon-
tal + vertical oscillations of vaporizing surface caused by shock waves. (a) Micrograph showing
a relatively regular hexagonal bubble cluster: M ~ 400 x (b) Reconstruction (schematic) of Figure (a),
showing random surface waves whose fronts form the bubble contour. (c) Micrograph showing quasi-
regular hexagonal cluster as well as some clusters of chaotic shape; M ~ 400 x . (d) Reconstruction of

Fig. (c) showing the fronts of random surface waves.
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Figure 6. Bubbles in the cluster are in contact along lines or planes (plateau borders), thus giving
rise to metal foam M ~ 500 x . The lower part of the figure shows Faraday waves.

independent of their density. Continuing the comparison of bubbles with granular mater-
ials, several mechanisms have been considered with such size separation, but none of them
can be a priori identified as responsible for bubble size separation.

In vertically shaken systems, however, experiments have shown a direct link between
convection and size separation. Large spheres become entrained in the upward connection
flow, whereas smaller ones stay at the periphery. This is also an argument in favour of the
presence of vertical vibrations of the vaporizing surface.

(it) Bubble-bubble boundary inside a cluster: metal foams
Another important characteristic of bubble clusters shown in Figures 5 and 6 is that
bubbles are in contact with their neighbours not at a single point, but along lines (or more
precisely, along planes), thus having a polyhedral form. Since bubble clusters of polyhedral
form are foam, the clusters in Figures 5 and 6 are metal foams. Their generation may be
understood as a consequence of the fact that bubbles start to behave as soft spheres. This is
because strong horizontal and vertical shaking reduces their horizontal velocity and
decreases the Weber number. At decreasing velocity, bubbles behave not like hard but like
soft spheres. As a consequence, hydrodynamic forces cause deformation of bubble pairs on
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Figure 7. Examples of topological processes involving finite plateau borders. The intermediate state
which has a four-fold border can be stable under certain circumstances (from McNamara & Young
1993).

collision, so that bubbles coalesce after the collision event. A cluster of bubbles that suffers
deformation and collisional coalescence makes foam. Foam polyhedrons (ranging from six-
to eight-sided ones) appear to be quasi-regular, rather than regular. In contrast to ideal
cases, a foam polyhedron does not have a perfectly ordered (honeycomb) structure of equal
cells.

Foam consists of cells, surrounded by sides of constant thickness (after an initial draining
process), each side being of constant curvature. The sides meet at plateau borders (Weaire
1992; Weaire et al. 1993) whose size depends on the pressure maintained in the liquid
network of sides/borders. The curvature of the borders and sides depends on the pressure
differences across them. This is in agreement with the elementary conditions of equilibrium,
which express the balance of pressure and surface tension. The surface tension or energy of
the films is the key to the stability of the whole structure. According to Weaire (1992),
a mechanism is available by means of which the surface energy may be lowered indefinitely.
The mechanism acts as the transfer of gas between cells; in most cases, this is a slow process
for the foam. From another point of view, this is simply the diffusion of gas through liquid
films in response to the difference in pressure between the cells on either side, and
proportional to it (Weaire et al. 1993). It causes large cells to grow by coalescence at the
expense of small ones by coalescence. The resulting evolution is expressed as topological
changes of various kinds, some of which are shown in Figure 7.

All bubbles do not show an ideally spherical top, but a top whose shape is intermediate
between a spherical and a polygonal shape. This may be understood as a consequence of the
variation of amount of the liquid in the foam. Weaire (1992) and Weaire et al. (1993)
observed the wet foam with spherical bubbles on top, separated from the dry polyhedral
foam underneath by a very sharp boundary. The boundary moves down as the extra fluid is
drained by gravity. They have shown that the boundary velocity is proportional to the
square-root of the liquid flow rate, which they justified using single-scale arguments
involving viscous Poiseuille flow along linear channels on the edge of the polyhedral
bubbles (called the plateau borders). In Poiseuille flow, the fluid sticks on the walls and
moves fastest in the middle of the channels. The rate of flow is proportional to the square of
the channel cross-section.

4. DISCUSSION

The foregoing results open some interesting and important questions. Being rather surpris-
ing, they indicate an analogy in the collective behaviour of solid spheres and of micro-
bubbles, i.e. the behaviour of granular material. However, many questions arising from this
analogy cannot be answered presently. To answer these questions, let us first consider the
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bubble characteristics as well as the collision process of such spheres.

4.1. HyprobpYNAMIC ASPECT: BUBBLE CHARACTERISTICS

It is well known that small bubbles can be approximated by spheres, and that the entire
bubble surface may become rigid (Maruvada & Park 1996). Many studies of bubble-bubble
collision have shown that the behaviour of bubbles depends on the Reynolds number, Re,
and the Weber number, We (Tsao & Koch 1997):

U U?
Re = i G, We = p 6,
u r

3)

where p and p are the density and viscosity of the liquid, U and ¢ are the velocity and
equivalent size of the bubble, and I is the surface tension of the liquid/air interface (Chesters
& Hofman 1982). Tsao & Koch (1997) have found that bubbles for We«1 and Re>1
collide and coalesce on contact. The hydrodynamic force is sufficient to cause a significant
deceleration of bubbles required to make contact. At moderate values of We, bubbles begin
to deform before the gap thickness becomes very small. Thus, it is possible that the film
between the two deformed bubbles becomes large enough to allow the inertial pressure in
the film to arrest the bubbles motion before contact. The studies of stationary bubble clouds
indicate that the two bubbles will bounce if the We number exceeds some critical value
(Weinitias = 028 for bubbles of ¢ = 0-5-0-7 mm). At high We numbers, the bubbles bounce,
as observed by Tsao & Koch (1997) and others.

The system of bubbles forming an elastic solid of hard spheres shows the “rigidity loss
transition” and many other interesting phenomena, which have been studied by Bolton
& Weaire (1990), Hutzler et al. (1998) and others. Recent studies have shown that even soap
bubbles behave as a 2-D system of hard spheres for a small value of the liquid fraction,
¢ (Peritical & 0-16), where ¢, is identified as the density of random packing of hard discs
(Hutzler et al. 1998).

Very small laser-generated bubbles (micron scale) may be regarded as rigid spheres, and
their collision on the short time scales (large velocity) can be approximated by the
behaviour of hard spheres. According to Maruvada & Park (1996), small bubbles behave
according to the criterion o/L <« 1, where o is the bubble size and L is the size of the system
(the spot diameter in this case). For laser-generated bubbles ¢ is 10~ ° m, the spot size L is
2-3x 1073 m (or more), which gives ¢/L<« 1, so that bubbles can be regarded as small and
hard spheres. If the bubble deformation is allowed in the collision process, the soft-sphere
behaviour is more appropriate.

4.2. CoNCEPTUAL FRAMEWORK OF BUBBLE SELF-ORGANIZATION: COLLISIONAL PROCESS IN
A 2-D GRANULAR SYSTEM

We assume a bubble to be a sphere (or a disc in two dimensions), and a thin vaporizing
metal surface to be (homogeneously) covered with bubbles as a granular system.

It is known that granular materials act as fluids, solids, and gases depending on how they
are excited (Lubkin 1995). At present there is no comprehensive understanding of the
fluid-like state of granular materials (of either hard or soft spheres), let alone the cross-over
between fluid-, solid- and gas-like behaviour. The fluid-like state in particular arises from
a highly nonlinear response to external vibrations. Concepts from ordinary hydrodynamics
or statistical mechanics fail for granular media, because the thermal energy is irrelevant and
all collisions are inelastic, which gives rise to the problem of an appropriate theoretical
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framework. Granular materials behave differently from continuous media (such as rigid,
elastic, or viscous bodies). This difference is due to the fact that granular materials behave in
two distinct ways: as a set of particles and as continuous media (Taguchi 1992).

Hard and soft spheres: Fluctuations in a system of spheres lead to inelastic collisions and
dynamics, which can be described (Goldhirsch & Zanetti 1993, Petravic 1993; McNamara
& Young 1994) by the system of equations

DV
o=~ VP 4)

2 DT
3P Dr = —VQ — tr(PD) —y, ®)
p=—V(pV), (6)

where D/Dt is the material derivative, p is the mass density, T the temperature of the sphere,
V the velocity field, D the symmetrized velocity gradient tensor, P the stress tensor, Q the
heat flux, and y the rate of energy loss due to inelastic collisions.

The above constitutive relations are valid for dilute granular gases where the coefficient
of restitution 7 is not too small. The hydrodynamic stress tensor is given by (Goldhircsh
& Zanetti 1993)

1
P = — PJ = 2u(D — 2 dirVI), ()

Here I is the unit tensor, P, the pressure, and yu the viscosity; Q = kVT; P, = apT, and the
viscosity is u = bap,T'/? the heat conductivity k = cop,T'/?, and y(dp,/c) T o is the
diameter of the particle, p, the density of spheres, a, b, and ¢ are constants, while o = f(r),
where r is the coefficient of normal restitution. Since the energy dissipated in a single
collision is proportional to 1 — 7, the coefficient of normal restitution is taken asr = 1 — 7>
(Goldhircsh & Zanetti 1993).

This simulation of the dynamics of the system of spheres is based on a comparison
between the mean free path of the sphere /Z, the total cross-section diameter for collision o,
the particle density N, and the restitution coefficient r.

Since the collision of spheres occurs at the surface only, i.e. in 2D space, the spheres may
be substituted (in the model) by discs. The difference between hard and soft spheres is
introduced through the collision potential ¢, which enters into the pressure tensor
P through the probability density function f (Petravic 1993).

The potential ¢ is the Lennard-Jones potential, which is truncated for hard spheres

(Petravic 1993) as
12 6
& 7y —(2 +¢ for ¥ <82
4 / 7
Pt = r r ) ®)

0 for ' < &/2¢
and for soft spheres as

4.{(6/)12 — <G,>j +¢ forvr<o
¢sof[ — r r , (9)

0 for ¥ <o

where ¢ is the depth of the potential well that controls the energy of interaction.
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The collision of soft discs takes place not in the point but over a finite path. The point
particle moves through the scattered particles during the collision, and the kinetic part of
the pressure tensor consists of the free streaming part between the collisions and of the part
during the collision. At T* =1(T* = kgT /¢ = reduced temperature) the kinetic contribution
of collisions is small compared with the contribution of free trajectories between the
collisions, because the repulsive force is sufficiently strong not to allow the point particle to
spend much time within the scatters. The motion of the particle between the collisions obeys
the same equation of motion for hard and soft discs. Therefore, the dependence of the
kinetic part of the normal stress difference and the off-diagonal element of the pressure
tensor on the shear rate for soft disks resembles the dependence for hard discs. Petravic
(1993) has shown that the behaviour of the pressure tensor for soft discs is similar to the
behaviour for hard discs, at least in the range of shear rates y* <3 (y* = myg/p =
yo./m/e = reduced shear rate): the normal stress difference is negative for p* =04
[p* = pa? = reduced number density), and becomes negative for y* > 1-5, for p* = 0-1.
However, the collision impulse for the finite force is smaller than the impulse for infinitively
hard discs, and this is the main reason that the potential part of the pressure tensor has
a smaller absolute value for soft discs, than for hard discs. In a qualitative sense, three
regimes of collision of hard and soft discs can be distinguished (McNamara & Young 1994):
(1) the “kinetic regime”, (ii) the “clustering regime”, (iii) the regime of “inelastic collapse”.

The above theoretical outline relating to the self-organization of hard and soft spheres
can be a tentative framework for the concept of self-organization of a 2-D microbubble
system.

We have observed that the bubble dynamics changes with the change of the spot size
(laser power density). Their self-organization also changes, in passing from one to another
type of organization, which strongly reminds one of the above regimes of collision of hard
spheres.

The question of how the variation of laser power density influences the bubble collision
process is not a simple one. We assume that the influence of the increased energy deposition
rate into the target surface (associated with increased Q,) does not result in an increase in
temperature (of the vaporizing surface), but in a larger bubble nucleation rate and conse-
quently, in larger bubble density. In addition, this influence occurs through a change in the
number of collisions and, finally, through a change of the restitution coefficient. To our
knowledge, the connection (relation) between Q, and the above parameters has not been
studied yet, and it is presently unknown.

Another question that follows relates to the shear rate y* and its dependence on Q,. The
influence of the shear rate y* on the onset of the “inelastic collapse” (the case when the
particle cannot “bounce off”’), for a system of hard and soft spheres was studied by Petravic
(1993).

According to Petravic (1993), when shear is present, the solution implies that the
magnitude of the radial component of momentum is different before and after the collision.
The point particle has a larger radial component after the collision in the quadrants where
the radial component of streaming velocity is negative, and a smaller radial component
where the radial component of streaming velocity is positive. In the former case, the impulse
is larger, whereas in the latter case it is smaller, than in equilibrium. The dependence of the
impulse on the polar angle of the momentum and on the coordinates of the collision point
can qualitatively explain the dependence of the potential part of the pressure tensor on the
shear rate, and the dependence of the potential of the latter on density and the shear rate as
separate parameters. A similar dependence of the potential part of the pressure tensor on
the shear rate for soft disks using the Lenard-Jones potential truncated at r' = o gives
confidence in the correctness of the collision law for hard discs (Petravic 1993).
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The solution of thermostated collision with shear shows that, for the reduced shear rate
y* > 4, such collisions may occur when the moving particle cannot “bounce off” after the
collision, but stays bound infinitely to the scatterer. These “forbidden” collisions have the
same origin as the artificial string phase observed in the strongly sheared soft disc systems.
The limit y* = 4 can be interpreted as the limit of applicability of the linear streaming
velocity profile. The actual probability distribution of the polar angle f of the collision
depends on density. For very low density, p*<«0-1, collisions are confined to points very
close to the top and bottom of the scatterer because of the nearly horizontal trajectories in
the vicinity of the scatterer. Therefore, for such low densities, the “forbidden” collisions may
occur, for the first time, at shear rates higher than y* = 4, and the limit of applicability of the
linear profile thermostat may be density dependent (Petravic 1993).

Since the bubble density is proportional to Q,, it is possible that y* also depends on Q,,
but the nature of this dependence is not presently known.

5. CONCLUSION

Bubbles generated in laser-metal interaction at transition from planar-to-volume vaporiza-
tion, behave like a 2D-system of rigid or semirigid spheres that undergo collision dynamics,
which reminds one of the behaviour typical of granular materials.

On a very short time scale (T = 10 ns), the bubble velocity is high, so that deceleration
(which leads to their deformation) does not occur. Consequently, they collide like hard
spheres. The bubble self-organization (which stays frozen-in after the pulse termination)
reveals three dynamic regimes, called by analogy with the system of hard spheres: (i) the
kinetic regime, (ii) the clustering regime, and (iii) the regime of inelastic collapse. The regime
of bubble self-organization varies with changes of laser power density Q,. The increase of
0, by <10% step (in the state of planar vaporization) causes a change of the collisional
regime from the kinetic, to the clustering regime, and finally to the regime of inelastic
collapse. Bubble self-organization in each of these regimes has been compared with the
corresponding SO structure of hard spheres, generated by numerical simulation. When the
shock wave intensity becomes large enough to affect the bubble velocity, bubbles behave as
vertically and horizontally shaken (vibrated) granular material. These vibrations cause
a decrease of the bubble horizontal velocity, which leads to the situation when hy-
drodynamic forces deform bubbles before collision. Bubbles then behave like soft spheres,
which leads to their coalescence after collision, and to the formation of metal foam.

The above results have surpass a mere (practical) consideration of laser-matter inter-
actions. They indicate the existence of various complexity levels in the self-organization of
bubbles on a small space-time scale. The variation of self-organization with the variation of
power density and connection to the “internal” control parameters (number of collisions,
restitution coefficient, dimension remains to be elucidated.
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